EOS AM-1 Mission Operations Review #### **EOC OPERATIONS** NELSON V. PINGITORE Lockheed Martin Space Mission Systems Goddard Space Flight Center/Code 505 Greenbelt, MD 20771 USA E-mail: nping@eos.hitc.com ## **FOT Day in the Life** 10034213W # FOT Day in the Life 24-Hour Operations Profile (AM-1) # **EOS AM-1 Typical Science Orbit** ### **FDD-Provided System Support** #### FOT will - Receive training on FDD systems prior to launch - Jointly operate FDD systems during launch and checkout - Provide two engineers for orbit and attitude evaluations - Provide online engineers to generate routine planning products and acquisition data - Provide FDD system performance reports to FDD - Provide AM-1's GN&C system performance reports to FDD PINGITOREI- 5 #### **FDD Product Flow** 10034213W ### FDD Product Flow (Cont'd) - Online engineers establish analysis standing orders to generate telemetry data sets that are transferred to FDD workstations - Online engineers execute FDD software to generate planning products, acquisition data, and loads for AM-1 - Online engineers are responsible for product QA - Schedulers informed of new FDD product availability - Update PDB - Inform IOTs of new products - Compile uplink loads - Update FOS resource model - FDD load uplink activities scheduled automatically and added to ground script - FOT is alerted of available loads for uplink - FOT uplinks loads to AM-1 during a TDRS contact PINGITOREI- **7** # **EOS Mission Planning and Scheduling Overview** ### **FOT Planning and Scheduling Interfaces and Functions** ## **SN/Ground Station Scheduling** - Automated communications contact scheduling algorithm - Tunable via FOT - SSR model input - Antenna views input - Capable of multiple runs - Manual conflict resolution with the NCC - Ground station contingency support - Worked through NCC or Wallops - Used in event of TDRS unavailability ## **FOT Scheduling** - FOT schedulers are responsible for - Populating spacecraft activities on Timeline - Formulating TDRS schedule - Generating AM-1 loads - Generating AM-1 ground script - Scheduling uplink of command loads - Activity definitions, RTCSs, and procedures used during scheduling process are maintained under CCB - ATC load and ground script are built from activities and commands entered on timeline - ATC load controls operation of spacecraft and selected instruments - Ground script is used by FOT as guideline for real-time command execution - ATC load and ground script are generated simultaneously - FDD loads generated and scheduled #### **NCC-EOS TDRSS Scheduling Timeline** #### **Forecast Schedule Requests Period** **FOT submits TDRSS** schedule requests #### **NCC Processes** AM-1 Schedule Requests **EOC** receives confirmed TDRSS schedule for forecast period #### **Active Schedule Processing Period** EOC analyzes schedule for conflicts and submits additional TDRS contact requests; FOT builds and uplinks loads ## NCC-EOS TDRSS Scheduling **Timeline: Day in the Life** # FOT Scheduling Scenario Flowchart #### **SCC Table Loads** - Tables required for routine operations will be built automatically by FOS - Content integrity will be verified by FOS and FOT - Tables will be placed into ground schedule for subsequent uplink - Orbit elements - State vectors - UT1-UTC conversion coefficient - FOT uses FOS Load Catalog to track all loads uplinked to spacecraft - Contents of all loads will be archived - Tables required for contingency operations will be built as identified (pre- and postlaunch) by responsible subsystem engineer - Contingency tables are maintained for life of mission, as appropriate - Procedures will be defined to control uplink of contingency tables - FOT uplinks tables at direction of responsible subsystem engineer #### **Instrument Microprocessor Loads** - The following items are being documented in the OICDs: - IOT delivers uplink file to FOS via IST tools - ASCII interpretive listing of load content provided to FOT - Uplink instructions provided to FOT via an authorized command request - Voice coordination between Operations Controller and IOT performed prior to targeted real-time contact; FOT/IOTs monitor uplink - Successful uplink feedback provided to FOT - All microprocessor loads are archived # **Product Summary** | Product | Activities | Command
Procedures | Relative Time
Sequence | Real-Time
Commands | |-----------------|--|---|---------------------------|-----------------------| | 1. Who creates? | IOTs and FOT (jointly) | IOTs and FOT
(jointly) | IOTs and FOT (jointly) | IOTs, LMVF, FOT | | 2. Where saved? | EOC database | EOC | Spacecraft | EOC database | | 3. Activated by | Event driven: a. Absolute time b. Day-to-night transition c. Night-to-day transition event d. Any orbital event e. etc. | EOC FOT: Ground script or human driven: a. Ground script initiated b. CAC initiated | EOC FOT or spacecraft | EOC FOT/IOT request | | 4. Used | Daily | As required | Daily | Daily | # FOT Real-Time Functions and Interfaces #### **AM-1 Real-Time Support Baseline** - Two 12-minute TDRS single access S-band/Ku-band real-time contacts per orbit - SSR buffers played back every TDRS single access S-band/Ku-band real-time contact - One noncoherent S-band event per day to directly measure master oscillator frequency - Remaining S-band events are coherent to support TONS and clock correlation - Events scheduled with minimum separation of 20 minutes and maximum separation of 60 minutes - All Ku-band events are noncoherent - Uplink TDRS state vector and orbit elements daily - Uplink AM-1 orbit elements daily - Uplink UT1-UTC coefficient daily - Uplink stored commands daily - Evaluate status of AM-1 spacecraft and instruments via real-time telemetry - Evaluate quality of SSR playback data via NCC, EDOS, and DSS messages ## FOT's 3-Step Approach for **Real-Time Support** - **Step 1: Precontact** - Starts at acquisition of signal (AOS) -20 minutes - Involves planning and organizing for upcoming contact - Offline engineers brief Operations Controller on engineering activities - IOTs brief Operations Controller on instrument command activities, as appropriate - Online engineers brief Operations Controller on expected state of spacecraft and instruments - Operations Controller prioritizes commanding - Operations Controller briefs NCC and EDOS on SSR playback, **Q** channel data rate changes - Operations Controller briefs FOT on order of commands for upcoming contact - Command Activity Controller (CAC) tests FOS and links to EDOS for integrity #### **Nominal EOS AM-1 Contact** ## **EOC Spacecraft Monitor Operations** **EOS Operations Center** #### Each contact (8 to 12 min x times per orbit) #### Real-time housekeeping telemetry Decom Convert Calibrate Limit check Alarm ---> analysis ---> action (procedure) **Display** #### Real-time commands(if required) Continuous housekeeping telemetry ----> SSR HK buffer LRS Buffer #### Once per day (minimum) Playback telemetry one full orbit (minimum) (System capable for 100% of PB Tlm) Decom Convert Calibrate Limit check Display Trend ---> short term, long term Analysis ----> Tables, Plots ---> analysis ---> performance ----> action (procedure) ## FOT's 3-Step Approach for Real-**Time Support (Cont'd)** - **Step 2: Contact** - Starts at AOS, ends at loss of signal (LOS) - Involves executing sequence of activities briefed by **Operations Controller during step 1** - Initiates and monitors SSR playback - Involves monitoring spacecraft and instrument telemetry and executing FOT evaluation checklists - Executes standard operating procedures for all expected commanding - Executes appropriate contingency operations procedures when anomalies are seen in telemetry - Coordinates with EDOS and IOTs on data quality, as needed ## FOT's 3-Step Approach for Real-**Time Support (Cont'd)** - **Step 3: Postcontact** - Starts at LOS - Online engineers report status to Operations Controller - Command activity controller evaluates rate-buffered data transferred from EDOS - IOTs involved in command activities report status to **Operations Controller** - Operations Controller briefs NCC and EDOS on link status during contact - Online engineers initiate analysis requests, as instructed ## FOT's 3-Step Approach for Real-Time Support (Cont'd) | | Task | Time | |------------------------|--|---------------------| | Precontact
(Step 1) | Check ground script execution Configure EOC Conduct EDOS communication test Conduct NCC communication test Perform NCC performance data request Confirm IST connectivity (as applicable) Conduct precontact briefing | Contact –20 minutes | | Contact
(Step 2) | Monitor spacecraft and instrument subsystem telemetry Monitor state check Perform and monitor SSR playback Monitor SCC activity log and dump Monitor clock correlation, updates Uplink ATC load Uplink spacecraft and TDRS ephemeris loads Uplink microprocessor loads Monitor maneuvers Respond to command request Coordinate with EDOS and IOTs, as needed | 12-minute contact | | Postcontact (Step 3) | Conduct postcontact briefing Ingest SSR data from EDOS Perform postcontact analysis | Contact +20 minutes | ### **SSR Management** - FOS SSR management tool provided to FOT - FOT goal is 100-percent science data capture - **Average playback time is 6 minutes (full requires 17 minutes)** - Five SSR buffers are defined on AM-1 spacecraft - Low-rate science - » CERES - » MOPITT - » Housekeeping - » Ancillary data - MISR - MODIS - ASTER - Trash ## **SSR Management (Cont'd)** - Receive pass schedule and SSR buffer playback sequence from planning and scheduling system - Generate SSR playback command sequences - Submit command requests to FOT - Monitor - SN user performance data (UPD) for Ku-band link status - Telemetered SSR buffer counters - EDOS CODAs for data capture and data quality - Track data losses and recapture data - Feed back "as flown" data to planning and scheduling to update SSR data volume models - Generate postpass reports # **SSR Analysis Window** #### SSR Analysis #### SSR Health and Safety PB Clock Present: On Memory Power Status: On Built in Test Ind: On Low Power Ind: On Memory Config Ind: On Temperature: 10 C Overwrite Status: Off Watch Dog Timer: Off Replay: On Playback: Off Instant Replay: Off Record: Off Standby: Off #### SSR Buffer Counters | | Playback Counter | Record Counter | |-------|------------------|----------------| | LRS | 000 | 820 | | MISR | 000 | 560 | | MODIS | 630 | 000 | | ASTER | 000 | 620 | | TRASH | 000 | 700 | #### Problems/Solutions 95/193/18:14:00.857 LCP Forward link has failed: xxxxxxxxxxx 95/193/18:14:01.030 LCS Send a GCMR: xxxxxxxxx 95/193/18:17:20.920 DRP Bad data quality 95/193/18:17:22.532 DRS Replay SSR #### **Clock Correlation** - FOT uses multistep approach to clock correlation - Execute Return Data Delay (RDD) technique on all real-time contacts (coarse estimate of clock error is provided to FOT in real time) - Execute USCCS technique on all coherent contacts - » Accurate estimate of clock error is obtained postcontact - » User-defined limits are set to alert FOT of need to steer master oscillator frequency (predefined procedures, commands, and tables on system) - » Master oscillator frequency behavior trends are statistically analyzed #### **Analysis Operations Baseline** - Goal is to capture 100 percent of housekeeping telemetry - Execute predefined analysis requests against each housekeepiong playback - Perform short-term analysis - Evaluate back-orbit AM-1 subsystem performance - Evaluate subsystem performance trends - Perform long-term analysis - Perform statistical evaluation of subsystem performance trends - Estimate subsystem EOL targets - Formulate operations and environment modifications to extend subsystem component life - Identify non-nominal subsystem performance # **Telemetry Analysis** ## **Decision Support System** - FOT will use DSS to - Monitor real-time telemetry - Provide expert recommendations for - » Limit violations - » Telemetry link failures - » Bus and instrument configuration identification - » SSR management - » Spacecraft activity log interpretation